3 research outputs found

    Integrity of glass-reinforced plastic (GRP) vessels under ice loading

    Get PDF
    Small glass-reinforced plastic (GRP) vessels, such as lifeboats and fishing vessels are occasionally used in sea ice conditions, despite the lack of structural design standards and operating standards for such conditions. In addition, there is limited knowledge relating to the magnitude of local ice loads on these vessels or the structural integrity of these craft under ice loading. To address these gaps, full-scale measurements relating to lifeboat-ice interactions were collected during a field campaign carried out in 2013 and 2014. During these trials, the local ice loads on the hull of a Totally Enclosed Motor Propelled Survival Craft (TEMPSC) operating in pack ice conditions were measured using instrumented load panels. This full-scale field data provides the foundation for risk-based design load estimation and has been analyzed using the event-maximum method of local ice pressure analysis. This approach is based on probabilistic methods developed for the analysis of ice loads measured on icebreakers, which have been adapted for ice interaction scenarios involving small vessels. Results from this work provide improved understanding into the nature of loads on small GRP vessels operating in ice-covered waters and help to inform design methodology for these vessels. To compliment these results, the field trials were also assessed in terms of the operational methods used by different coxswains when maneuvering through an ice field. Insights from this analysis provide operational guidance towards methods that can mitigate peak impacts and improve the maneuverability of these vessels in ice

    Risk management of offshore logistics support operations in remote harsh environments

    Get PDF
    Activities in northern offshore regions are increasing due to proven reserves of natural resources. These regions are considered to have a harsh marine environment due to extreme weather conditions, namely low temperatures, frequent storms and the presence of sea ice. In general these activities are moving further offshore. Thus many new developments are faced with operations in extreme environments at long distances from shore support. Design, operational and regulatory planning for such offshore installations must consider the environmental challenges along with additional difficulties that arise due to remoteness. The most significant aspects of an offshore development that are affected by the factors of environment and remoteness, are the logistical support functions required for daily operations and the rapid response required for emergencies. In the early stages of design it would be beneficial to have a means of assessing the high risk elements of such operations and the risk reduction cost effectiveness of proposed solutions. This study presents an end-to-end risk reduction analysis of the logistical support functions for a typical remote harsh-environment offshore operation including; risk assessment to provide identification of most significant risks, risk reduction modeling and development of a solution to provide the identified most effective reduction strategy, and finally a cost benefit analysis that includes the costed initial risk factors, the solution cost and the costed net reduction in risk arising from implementation. This research serves three functions. It develops a procedure for evaluating offshore operations that have inherently high logistical risks due mainly to distance but also applicable to other factors. It provides a risk analysis based solution to the specific problem of remote operations in harsh environments. Finally it develops a method of determining the utility of a possible solution or of alternative solutions through rational risk based cost analysis. The study is divided into four phases, Risk Analysis, Risk Reduction, Specific Solution and Cost-Benefit Analysis. In phase one – risk analysis, an advanced probabilistic model is developed using fault trees to identify the main contributing factors of the logistical challenges. A fuzzy-based and evidence-based approach is implemented to address inherent data limitations. It is found that existing modes of logistics support such as marine vessel or helicopter are not sufficiently reliable and quick for remote offshore operations. Moving towards in phase two – risk reduction, a conditional dependence-based Bayesian model is developed that has integrated multiple alternative risk reduction measures. The analysis depicts that a nearby offshore refuge and an additional layer of safety inventory are found to the most effective measures. In phase three – specific solution, the concept of a moored vessel, which is termed as offshore resource centre (ORC) is proposed that can meet the functions of both these measures. The overall dimensions of the ORC are derived based on the functional requirements and the model is validated for stability and mooring requirements. In phase four – cost-benefit analysis, the life cycle costs of an ORC is estimated from historical vessel data using regression analysis. A loss model is developed for a hypothetical blowout incident, which is a function response time and the distance from shore support. These models are integrated into a single framework that can project the costed risk with or without the ORC. The analysis reveals that an ORC becomes more and more viable when the offshore distance becomes longer and if there is a higher probability of any platform incident, recognizing that it is desirable to keep the probability as low as possible. Taken together these phases form a full analysis from problem identification through solution cost-benefit

    Probabilistic analysis of local ice loads on a lifeboat measured in full-scale field trials

    No full text
    This paper presents an analysis of local ice loads measured during full-scale field trials conducted in 2014 with a totally enclosed motor propelled survival craft (TEMPSC) in controlled pack ice conditions. These data were collected as part of an ongoing research program that aims to identify the limitations of conventional TEMPSC operating in sea ice environments and to provide insight as to how these limitations might be extended. During the 2014 trials, local ice loads were measured at two locations on the TEMPSC's bow area. These loads were the most severe measured to date and corresponded to an average ice floe mass that was approximately 1.25 times the mass of the fully loaded TEMPSC. The event-maximum method of local ice pressure analysis was used to analyze these field data to improve understanding of the nature of ice loads for such interactions and to evaluate the suitability of this approach for design load estimation for TEMPSCs (i.e., lifeboats) in ice. The event-maximum method was adapted for the present application, so as to link exceedance probabilities with design load levels for a given scenario. Comparison of the 2014 results with a previous analysis of 2013 field trials data supports earlier conclusions that these interactions are highly influenced by kinetic energy, since more massive ice floes are observed to impart significantly higher loads on the lifeboats. Illustrative examples examining the influence of ice concentration and sail-away distance have also been provided. The work establishes links between extreme loads and the exposure of the lifeboat to ice for different operating conditions. Based on this work it is concluded that the event-maximum method provides a promising approach for establishing risk-based design criteria for lifeboats if field data are available which adequately represent ice conditions encountered during the design life of the lifeboat.Peer reviewed: YesNRC publication: Ye
    corecore